Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;
- **Inorganic Contaminants**, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;
- **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Community Participation

The public is encouraged to attend Algonquin Village Board meetings, which are held at the Village Board Room, 2200 Harnish Drive, Algonquin. The meetings are held on the first and third Tuesdays of each month beginning at 8 pm.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Website: [http://water.epa.gov/drink/hotline](http://water.epa.gov/drink/hotline)
Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far, the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Further, the FDA completely exempts bottled water that’s packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to $1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc.org/water/drinking/bw/exesum.asp.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Jason Schutz, Chief Water Operator, at (847) 658-2754, ext. 4421.
Where Does Algonquin’s Water Come From?

The Village of Algonquin currently draws water from nine wells. Wells 5, 6, 7, and 11 are all shallow wells that are located on the east side of the Fox River. These wells provide the water that is treated at Water Treatment Plant #1, which is on Souwanas Trail.

Wells 8 and 9 are shallow wells that provide water to Water Treatment Plant #2, which is on Wynnfield Drive on the west side of the Fox River in Willoughby Farms Subdivision. Well 10 is a deep well (approximately 1,300 feet) that also provides water for treatment at Water Treatment Plant #2.

Wells 13 and 15 are shallow wells that provide water to Water Treatment Plant #3, which is on the corner of Square Barn Road and Academic Drive on the far west side of town. The combined design capacity from the three Water Treatment Facilities total 11 million gallons per day.

Source Water Assessment

Based on information obtained in a well site survey published in 1990 by the Illinois EPA, 12 possible problem sites were identified within the survey area of Algonquin. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several additional sites with ongoing remediation that may be of concern. The Illinois EPA has determined that Algonquin Community Water Supply’s source water is not susceptible to contamination. This determination is based on a number of criteria: monitoring conducted at the wells; monitoring conducted at the entry point to the distribution system; and the available hydrogeologic data on the wells. The Illinois Environmental Protection Act provides minimum protection zones of 200 feet for Algonquin’s wells. The Illinois EPA regulates minimum protection zones.

To further minimize the risk to Algonquin’s groundwater supply, the Illinois EPA recommends that three additional activities be assessed. First, the Village may wish to enact a “maximum setback zone” ordinance. These ordinances are authorized by the Illinois Environmental Protection Act and allow county and municipal officials the opportunity to provide additional protection up to a fixed distance, normally 1,000 feet, from their wells. Algonquin has recently adopted its own set of wellhead protection zone ordinances. Second, the water supply staff may wish to revisit their contingency planning documents, if available. Contingency planning documents are a primary means to ensure that, through emergency preparedness, a village will minimize its risk of being without safe and adequate water. Algonquin has a current contingency plan document on file. Finally, the water supply staff is encouraged to review their cross-connection control program to ensure that it remains current and viable. Cross-connections to either the water treatment plant (for example, at bulk water loading stations) or in the distribution system may negate all source water protection initiatives provided by the Village. This past year, the Algonquin Water Department has reviewed and updated our cross-connection control program. This ensures that our water system is receiving the best possible protection from contaminants that could be introduced to our system by backpressure or backsiphoning.

To receive a copy of the source water assessment, contact the Algonquin Village Water Department at (847) 658-2754.
Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bathrooms on shower stalls, tubs, tile, toilets, sinks, toothbrush holders and on pets’ water bowls is caused by the growth of the bacterium Serratia marcescens. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including man). The bacteria can be introduced into the house through any of the above mentioned sources. The bathroom provides a perfect environment (moist and warm) for bacteria to thrive.

The best solution to this problem is to continually clean and dry the involved surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to disinfect the toilet and help to eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence.

Serratia will not survive in chlorinated drinking water.
Sampling Results

During the past year we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 3rd stage of the EPA’s Unregulated Contaminant Monitoring Regulation (UCMR3) program by performing additional tests on our drinking water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if EPA needs to introduce new regulatory standards to improve drinking water quality.

### REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>Substance (Unit of Measure)</th>
<th>Year Sampled</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDGL]</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Alpha Emitters</strong> (pCi/L)</td>
<td>2013</td>
<td>15</td>
<td>0</td>
<td>2.13</td>
<td>2.13–2.13</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td><strong>Barium</strong> (ppm)</td>
<td>2012</td>
<td>2</td>
<td>2</td>
<td>0.12</td>
<td>0.12–0.12</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td><strong>Chlorine</strong> (ppm)</td>
<td>2013</td>
<td>[4]</td>
<td>[4]</td>
<td>1.1</td>
<td>1–2</td>
<td>No</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td><strong>Combined Radium</strong> (pCi/L)</td>
<td>2013</td>
<td>5</td>
<td>0</td>
<td>3.27</td>
<td>3.27–3.27</td>
<td>No</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td><strong>Fluoride</strong> (ppm)</td>
<td>2012</td>
<td>4</td>
<td>4</td>
<td>0.924</td>
<td>0.924–0.924</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td><strong>Haloacetic Acids [HAA]–Stage 1</strong> (ppb)</td>
<td>2013</td>
<td>60</td>
<td>NA</td>
<td>20</td>
<td>0–20</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td><strong>Nitrate</strong> (ppm)</td>
<td>2013</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0–1.13</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td><strong>TTHMs [Total Trihalomethanes]–Stage 1</strong> (ppb)</td>
<td>2013</td>
<td>80</td>
<td>NA</td>
<td>52</td>
<td>34.87–54.07</td>
<td>No</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td><strong>Total Coliform Bacteria</strong> (% positive samples)</td>
<td>2013</td>
<td>5% of monthly samples are positive</td>
<td>0</td>
<td>2</td>
<td>NA</td>
<td>No</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.

### STATE REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>Substance (Unit of Measure)</th>
<th>Year Sampled</th>
<th>MCL [MRDL]</th>
<th>MCLG [MRDGL]</th>
<th>Amount Detected</th>
<th>Range Low-High</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Manganese</strong> (ppb)</td>
<td>2012</td>
<td>150</td>
<td>NA</td>
<td>6.6</td>
<td>6.6–6.6</td>
<td>No</td>
<td>Erosion of naturally occurring deposits</td>
</tr>
<tr>
<td><strong>Sodium</strong> (ppm)</td>
<td>2012</td>
<td>NA</td>
<td>NA</td>
<td>28</td>
<td>28–28</td>
<td>No</td>
<td>Erosion of naturally occurring deposits; used in water softener regeneration</td>
</tr>
</tbody>
</table>

1 Manganese and sodium are not currently regulated by the U.S. EPA. However, the state has set MCLs for supplies serving a population of 1,000 or more.
Definitions

AL (Action Level): The concentration of a contaminant that triggers treatment or other required actions by the water supply.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).